Penrose ’ s limit theorem : proof of some special cases Ines
نویسندگان
چکیده
L.S. Penrose was the first to propose a measure of voting power (which later came to be known as ‘the [absolute] Banzhaf (Bz) index’). His limit theorem—which is implicit in his booklet (1952) and for which he gave no rigorous proof—says that in simple weighted voting games (WVGs), if the number of voters increases indefinitely while the quota is pegged at half the total weight, then— under certain conditions—the ratio between the voting powers (as measured by him) of any two voters converges to the ratio between their weights. We conjecture that the theorem holds, under rather general conditions, for large classes of variously defined WVGs, other values of the quota, and other measures of voting power. We provide proofs for some special cases. D 2003 Elsevier B.V. All rights reserved.
منابع مشابه
( refereed ) L . S . Penrose ' s limit theorem : proof of some special cases . Ines Lindner and
LS Penrose was the first to propose a measure of voting power (which later came to be known as ‘the [absolute] Banzhaf index’). His limit theorem – which is implicit in Penrose (1952) and for which he gave no rigorous proof – says that, in simple weighted voting games, if the number of voters increases indefinitely while the quota is pegged at half the total weight, then – under certain conditi...
متن کاملCases where the Penrose limit theorem does not hold
Penrose's limit theorem (PLT, really a conjecture) states that the relative power measure of two voters tends asymptotically to their relative voting weight (number of votes). This property approximately holds in most of real life and in randomly generated WVGs for various measures of voting power. Lindner and Machover prove it for some special cases; amongst others they give a condition for th...
متن کاملL S Penrose's limit theorem: Tests by simulation
L S Penrose’s Limit Theorem – which is implicit in Penrose [7, p. 72] and for which he gave no rigorous proof – says that, in simple weighted voting games, if the number of voters increases indefinitely and the relative quota is pegged, then – under certain conditions – the ratio between the voting powers of any two voters converges to the ratio between their weights. Lindner and Machover [4] p...
متن کاملThe limit set intersection theorem for finitely generated Kleinian groups
The proof of the Theorem proceeds by showing that it holds in some special cases involving Kleinian groups with connected limit sets, and then extending to the general case by using a decomposition argument based on the Klein-Maskit combination theorems and a careful tracking of the limit points resulting from this decomposition. We discuss various well-behaved classes of limit points in Sectio...
متن کاملMATRIX VALUATION PSEUDO RING (MVPR) AND AN EXTENSION THEOREM OF MATRIX VALUATION
Let R be a ring and V be a matrix valuation on R. It is shown that, there exists a correspondence between matrix valuations on R and some special subsets ?(MVPR) of the set of all square matrices over R, analogous to the correspondence between invariant valuation rings and abelian valuation functions on a division ring. Furthermore, based on Malcolmson’s localization, an alternative proof for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003